\(\int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^4} \, dx\) [1243]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F(-1)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 43, antiderivative size = 234 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^4} \, dx=\frac {(B+8 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^4 d}+\frac {(3 A+4 B+17 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{42 a^4 d}+\frac {(15 A-B-83 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{210 a^4 d (1+\cos (c+d x))^2}-\frac {(B+8 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{10 a^4 d (1+\cos (c+d x))}-\frac {(A-B+C) \sqrt {\cos (c+d x)} \sin (c+d x)}{7 d (a+a \cos (c+d x))^4}+\frac {(5 A+2 B-9 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{35 a d (a+a \cos (c+d x))^3} \]

[Out]

1/10*(B+8*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^4/d+1/42*
(3*A+4*B+17*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^4/d+1/2
10*(15*A-B-83*C)*sin(d*x+c)*cos(d*x+c)^(1/2)/a^4/d/(1+cos(d*x+c))^2-1/10*(B+8*C)*sin(d*x+c)*cos(d*x+c)^(1/2)/a
^4/d/(1+cos(d*x+c))-1/7*(A-B+C)*sin(d*x+c)*cos(d*x+c)^(1/2)/d/(a+a*cos(d*x+c))^4+1/35*(5*A+2*B-9*C)*sin(d*x+c)
*cos(d*x+c)^(1/2)/a/d/(a+a*cos(d*x+c))^3

Rubi [A] (verified)

Time = 0.86 (sec) , antiderivative size = 234, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.140, Rules used = {4197, 3120, 3057, 2827, 2720, 2719} \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^4} \, dx=\frac {(3 A+4 B+17 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{42 a^4 d}+\frac {(15 A-B-83 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{210 a^4 d (\cos (c+d x)+1)^2}+\frac {(B+8 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^4 d}-\frac {(B+8 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{10 a^4 d (\cos (c+d x)+1)}+\frac {(5 A+2 B-9 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{35 a d (a \cos (c+d x)+a)^3}-\frac {(A-B+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{7 d (a \cos (c+d x)+a)^4} \]

[In]

Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Cos[c + d*x]^(5/2)*(a + a*Sec[c + d*x])^4),x]

[Out]

((B + 8*C)*EllipticE[(c + d*x)/2, 2])/(10*a^4*d) + ((3*A + 4*B + 17*C)*EllipticF[(c + d*x)/2, 2])/(42*a^4*d) +
 ((15*A - B - 83*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(210*a^4*d*(1 + Cos[c + d*x])^2) - ((B + 8*C)*Sqrt[Cos[c
+ d*x]]*Sin[c + d*x])/(10*a^4*d*(1 + Cos[c + d*x])) - ((A - B + C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(7*d*(a +
a*Cos[c + d*x])^4) + ((5*A + 2*B - 9*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(35*a*d*(a + a*Cos[c + d*x])^3)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3057

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*
x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 3120

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*A - b*B + a*C)*Cos[e + f*x]*(a
 + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Dist[1/(b*(b*c - a*d)*(2*m
 + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) + B*(
b*c*m + a*d*(n + 1)) - C*(a*c*m + b*d*(n + 1)) + (d*(a*A - b*B)*(m + n + 2) + C*(b*c*(2*m + 1) - a*d*(m - n -
1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^
2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rule 4197

Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sec[(e_.)
 + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[d^(m + 2), Int[(b + a*Cos[e + f*x])^m*(d*
Cos[e + f*x])^(n - m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}
, x] &&  !IntegerQ[n] && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \int \frac {C+B \cos (c+d x)+A \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^4} \, dx \\ & = -\frac {(A-B+C) \sqrt {\cos (c+d x)} \sin (c+d x)}{7 d (a+a \cos (c+d x))^4}+\frac {\int \frac {-\frac {1}{2} a (A-B-13 C)+\frac {1}{2} a (9 A+5 B-5 C) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3} \, dx}{7 a^2} \\ & = -\frac {(A-B+C) \sqrt {\cos (c+d x)} \sin (c+d x)}{7 d (a+a \cos (c+d x))^4}+\frac {(5 A+2 B-9 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{35 a d (a+a \cos (c+d x))^3}+\frac {\int \frac {\frac {7}{2} a^2 (B+8 C)+\frac {3}{2} a^2 (5 A+2 B-9 C) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx}{35 a^4} \\ & = \frac {(15 A-B-83 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{210 a^4 d (1+\cos (c+d x))^2}-\frac {(A-B+C) \sqrt {\cos (c+d x)} \sin (c+d x)}{7 d (a+a \cos (c+d x))^4}+\frac {(5 A+2 B-9 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{35 a d (a+a \cos (c+d x))^3}+\frac {\int \frac {\frac {1}{4} a^3 (15 A+41 B+253 C)+\frac {1}{4} a^3 (15 A-B-83 C) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx}{105 a^6} \\ & = \frac {(15 A-B-83 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{210 a^4 d (1+\cos (c+d x))^2}-\frac {(A-B+C) \sqrt {\cos (c+d x)} \sin (c+d x)}{7 d (a+a \cos (c+d x))^4}+\frac {(5 A+2 B-9 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{35 a d (a+a \cos (c+d x))^3}-\frac {(B+8 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{10 d \left (a^4+a^4 \cos (c+d x)\right )}+\frac {\int \frac {\frac {5}{4} a^4 (3 A+4 B+17 C)+\frac {21}{4} a^4 (B+8 C) \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx}{105 a^8} \\ & = \frac {(15 A-B-83 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{210 a^4 d (1+\cos (c+d x))^2}-\frac {(A-B+C) \sqrt {\cos (c+d x)} \sin (c+d x)}{7 d (a+a \cos (c+d x))^4}+\frac {(5 A+2 B-9 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{35 a d (a+a \cos (c+d x))^3}-\frac {(B+8 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{10 d \left (a^4+a^4 \cos (c+d x)\right )}+\frac {(B+8 C) \int \sqrt {\cos (c+d x)} \, dx}{20 a^4}+\frac {(3 A+4 B+17 C) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{84 a^4} \\ & = \frac {(B+8 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^4 d}+\frac {(3 A+4 B+17 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{42 a^4 d}+\frac {(15 A-B-83 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{210 a^4 d (1+\cos (c+d x))^2}-\frac {(A-B+C) \sqrt {\cos (c+d x)} \sin (c+d x)}{7 d (a+a \cos (c+d x))^4}+\frac {(5 A+2 B-9 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{35 a d (a+a \cos (c+d x))^3}-\frac {(B+8 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{10 d \left (a^4+a^4 \cos (c+d x)\right )} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 19.73 (sec) , antiderivative size = 1626, normalized size of antiderivative = 6.95 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^4} \, dx=-\frac {8 A \cos ^8\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{7 d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) \sqrt {1+\cot ^2(c)} (a+a \sec (c+d x))^4}-\frac {32 B \cos ^8\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{21 d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) \sqrt {1+\cot ^2(c)} (a+a \sec (c+d x))^4}-\frac {136 C \cos ^8\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{21 d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) \sqrt {1+\cot ^2(c)} (a+a \sec (c+d x))^4}+\frac {\cos ^8\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (-\frac {16 (B+8 C) \csc (c)}{5 d}+\frac {8 \sec \left (\frac {c}{2}\right ) \sec ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (15 A \sin \left (\frac {d x}{2}\right )-B \sin \left (\frac {d x}{2}\right )-83 C \sin \left (\frac {d x}{2}\right )\right )}{105 d}+\frac {8 \sec \left (\frac {c}{2}\right ) \sec ^5\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (5 A \sin \left (\frac {d x}{2}\right )+2 B \sin \left (\frac {d x}{2}\right )-9 C \sin \left (\frac {d x}{2}\right )\right )}{35 d}-\frac {4 \sec \left (\frac {c}{2}\right ) \sec ^7\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A \sin \left (\frac {d x}{2}\right )-B \sin \left (\frac {d x}{2}\right )+C \sin \left (\frac {d x}{2}\right )\right )}{7 d}-\frac {16 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \left (B \sin \left (\frac {d x}{2}\right )+8 C \sin \left (\frac {d x}{2}\right )\right )}{5 d}+\frac {8 (15 A-B-83 C) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \tan \left (\frac {c}{2}\right )}{105 d}+\frac {8 (5 A+2 B-9 C) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \tan \left (\frac {c}{2}\right )}{35 d}-\frac {4 (A-B+C) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \tan \left (\frac {c}{2}\right )}{7 d}\right )}{\cos ^{\frac {3}{2}}(c+d x) (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) (a+a \sec (c+d x))^4}-\frac {4 B \cos ^8\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{5 d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) (a+a \sec (c+d x))^4}-\frac {32 C \cos ^8\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{5 d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) (a+a \sec (c+d x))^4} \]

[In]

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Cos[c + d*x]^(5/2)*(a + a*Sec[c + d*x])^4),x]

[Out]

(-8*A*Cos[c/2 + (d*x)/2]^8*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]
*Sec[c + d*x]^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Co
t[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(7*d
*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x])^4) - (32*B*Cos[c/2
+ (d*x)/2]^8*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[c + d*x]^
2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-
(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(21*d*(A + 2*C + 2
*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x])^4) - (136*C*Cos[c/2 + (d*x)/2]^8
*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[c + d*x]^2*(A + B*Sec
[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Co
t[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(21*d*(A + 2*C + 2*B*Cos[c + d
*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x])^4) + (Cos[c/2 + (d*x)/2]^8*(A + B*Sec[c + d*
x] + C*Sec[c + d*x]^2)*((-16*(B + 8*C)*Csc[c])/(5*d) + (8*Sec[c/2]*Sec[c/2 + (d*x)/2]^3*(15*A*Sin[(d*x)/2] - B
*Sin[(d*x)/2] - 83*C*Sin[(d*x)/2]))/(105*d) + (8*Sec[c/2]*Sec[c/2 + (d*x)/2]^5*(5*A*Sin[(d*x)/2] + 2*B*Sin[(d*
x)/2] - 9*C*Sin[(d*x)/2]))/(35*d) - (4*Sec[c/2]*Sec[c/2 + (d*x)/2]^7*(A*Sin[(d*x)/2] - B*Sin[(d*x)/2] + C*Sin[
(d*x)/2]))/(7*d) - (16*Sec[c/2]*Sec[c/2 + (d*x)/2]*(B*Sin[(d*x)/2] + 8*C*Sin[(d*x)/2]))/(5*d) + (8*(15*A - B -
 83*C)*Sec[c/2 + (d*x)/2]^2*Tan[c/2])/(105*d) + (8*(5*A + 2*B - 9*C)*Sec[c/2 + (d*x)/2]^4*Tan[c/2])/(35*d) - (
4*(A - B + C)*Sec[c/2 + (d*x)/2]^6*Tan[c/2])/(7*d)))/(Cos[c + d*x]^(3/2)*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2
*c + 2*d*x])*(a + a*Sec[c + d*x])^4) - (4*B*Cos[c/2 + (d*x)/2]^8*Csc[c/2]*Sec[c/2]*Sec[c + d*x]^2*(A + B*Sec[c
 + d*x] + C*Sec[c + d*x]^2)*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + Ar
cTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos
[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 +
Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d
*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(5*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*(a + a*Sec[c
 + d*x])^4) - (32*C*Cos[c/2 + (d*x)/2]^8*Csc[c/2]*Sec[c/2]*Sec[c + d*x]^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]
^2)*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(S
qrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*S
qrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*
Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqr
t[1 + Tan[c]^2]]))/(5*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + d*x])^4)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(594\) vs. \(2(266)=532\).

Time = 3.76 (sec) , antiderivative size = 595, normalized size of antiderivative = 2.54

method result size
default \(-\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (60 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}-168 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}+80 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}-84 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-1344 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}+340 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}-672 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+60 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+248 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+1684 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}-30 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-54 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-282 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-90 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-8 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-34 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+75 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-33 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-9 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} C -15 A +15 B -15 C \right )}{840 a^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(595\)

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*sec(d*x+c))^4,x,method=_RETURNVERBOSE)

[Out]

-1/840*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(60*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*
d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^7-168*B*cos(1/2*d*x+1/2*c)^10+8
0*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1
/2*d*x+1/2*c)^7-84*B*cos(1/2*d*x+1/2*c)^7*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*Ellip
ticE(cos(1/2*d*x+1/2*c),2^(1/2))-1344*C*cos(1/2*d*x+1/2*c)^10+340*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d
*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^7-672*C*cos(1/2*d*x+1/2*c)^7*(si
n(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+60*A*cos(1/2
*d*x+1/2*c)^8+248*B*cos(1/2*d*x+1/2*c)^8+1684*C*cos(1/2*d*x+1/2*c)^8-30*A*cos(1/2*d*x+1/2*c)^6-54*B*cos(1/2*d*
x+1/2*c)^6-282*C*cos(1/2*d*x+1/2*c)^6-90*A*cos(1/2*d*x+1/2*c)^4-8*B*cos(1/2*d*x+1/2*c)^4-34*C*cos(1/2*d*x+1/2*
c)^4+75*A*cos(1/2*d*x+1/2*c)^2-33*B*cos(1/2*d*x+1/2*c)^2-9*cos(1/2*d*x+1/2*c)^2*C-15*A+15*B-15*C)/a^4/cos(1/2*
d*x+1/2*c)^7/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1
)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 615, normalized size of antiderivative = 2.63 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^4} \, dx=-\frac {2 \, {\left (21 \, {\left (B + 8 \, C\right )} \cos \left (d x + c\right )^{3} - {\left (15 \, A - 64 \, B - 587 \, C\right )} \cos \left (d x + c\right )^{2} - {\left (60 \, A - 53 \, B - 724 \, C\right )} \cos \left (d x + c\right ) - 15 \, A - 20 \, B + 335 \, C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 5 \, {\left (\sqrt {2} {\left (3 i \, A + 4 i \, B + 17 i \, C\right )} \cos \left (d x + c\right )^{4} + 4 \, \sqrt {2} {\left (3 i \, A + 4 i \, B + 17 i \, C\right )} \cos \left (d x + c\right )^{3} + 6 \, \sqrt {2} {\left (3 i \, A + 4 i \, B + 17 i \, C\right )} \cos \left (d x + c\right )^{2} + 4 \, \sqrt {2} {\left (3 i \, A + 4 i \, B + 17 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (3 i \, A + 4 i \, B + 17 i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, {\left (\sqrt {2} {\left (-3 i \, A - 4 i \, B - 17 i \, C\right )} \cos \left (d x + c\right )^{4} + 4 \, \sqrt {2} {\left (-3 i \, A - 4 i \, B - 17 i \, C\right )} \cos \left (d x + c\right )^{3} + 6 \, \sqrt {2} {\left (-3 i \, A - 4 i \, B - 17 i \, C\right )} \cos \left (d x + c\right )^{2} + 4 \, \sqrt {2} {\left (-3 i \, A - 4 i \, B - 17 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-3 i \, A - 4 i \, B - 17 i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 \, {\left (\sqrt {2} {\left (-i \, B - 8 i \, C\right )} \cos \left (d x + c\right )^{4} + 4 \, \sqrt {2} {\left (-i \, B - 8 i \, C\right )} \cos \left (d x + c\right )^{3} + 6 \, \sqrt {2} {\left (-i \, B - 8 i \, C\right )} \cos \left (d x + c\right )^{2} + 4 \, \sqrt {2} {\left (-i \, B - 8 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, B - 8 i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 \, {\left (\sqrt {2} {\left (i \, B + 8 i \, C\right )} \cos \left (d x + c\right )^{4} + 4 \, \sqrt {2} {\left (i \, B + 8 i \, C\right )} \cos \left (d x + c\right )^{3} + 6 \, \sqrt {2} {\left (i \, B + 8 i \, C\right )} \cos \left (d x + c\right )^{2} + 4 \, \sqrt {2} {\left (i \, B + 8 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, B + 8 i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{420 \, {\left (a^{4} d \cos \left (d x + c\right )^{4} + 4 \, a^{4} d \cos \left (d x + c\right )^{3} + 6 \, a^{4} d \cos \left (d x + c\right )^{2} + 4 \, a^{4} d \cos \left (d x + c\right ) + a^{4} d\right )}} \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*sec(d*x+c))^4,x, algorithm="fricas")

[Out]

-1/420*(2*(21*(B + 8*C)*cos(d*x + c)^3 - (15*A - 64*B - 587*C)*cos(d*x + c)^2 - (60*A - 53*B - 724*C)*cos(d*x
+ c) - 15*A - 20*B + 335*C)*sqrt(cos(d*x + c))*sin(d*x + c) + 5*(sqrt(2)*(3*I*A + 4*I*B + 17*I*C)*cos(d*x + c)
^4 + 4*sqrt(2)*(3*I*A + 4*I*B + 17*I*C)*cos(d*x + c)^3 + 6*sqrt(2)*(3*I*A + 4*I*B + 17*I*C)*cos(d*x + c)^2 + 4
*sqrt(2)*(3*I*A + 4*I*B + 17*I*C)*cos(d*x + c) + sqrt(2)*(3*I*A + 4*I*B + 17*I*C))*weierstrassPInverse(-4, 0,
cos(d*x + c) + I*sin(d*x + c)) + 5*(sqrt(2)*(-3*I*A - 4*I*B - 17*I*C)*cos(d*x + c)^4 + 4*sqrt(2)*(-3*I*A - 4*I
*B - 17*I*C)*cos(d*x + c)^3 + 6*sqrt(2)*(-3*I*A - 4*I*B - 17*I*C)*cos(d*x + c)^2 + 4*sqrt(2)*(-3*I*A - 4*I*B -
 17*I*C)*cos(d*x + c) + sqrt(2)*(-3*I*A - 4*I*B - 17*I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x
 + c)) + 21*(sqrt(2)*(-I*B - 8*I*C)*cos(d*x + c)^4 + 4*sqrt(2)*(-I*B - 8*I*C)*cos(d*x + c)^3 + 6*sqrt(2)*(-I*B
 - 8*I*C)*cos(d*x + c)^2 + 4*sqrt(2)*(-I*B - 8*I*C)*cos(d*x + c) + sqrt(2)*(-I*B - 8*I*C))*weierstrassZeta(-4,
 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 21*(sqrt(2)*(I*B + 8*I*C)*cos(d*x + c)^4 + 4*
sqrt(2)*(I*B + 8*I*C)*cos(d*x + c)^3 + 6*sqrt(2)*(I*B + 8*I*C)*cos(d*x + c)^2 + 4*sqrt(2)*(I*B + 8*I*C)*cos(d*
x + c) + sqrt(2)*(I*B + 8*I*C))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c
))))/(a^4*d*cos(d*x + c)^4 + 4*a^4*d*cos(d*x + c)^3 + 6*a^4*d*cos(d*x + c)^2 + 4*a^4*d*cos(d*x + c) + a^4*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^4} \, dx=\text {Timed out} \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/cos(d*x+c)**(5/2)/(a+a*sec(d*x+c))**4,x)

[Out]

Timed out

Maxima [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^4} \, dx=\text {Timed out} \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*sec(d*x+c))^4,x, algorithm="maxima")

[Out]

Timed out

Giac [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^4} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{{\left (a \sec \left (d x + c\right ) + a\right )}^{4} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*sec(d*x+c))^4,x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/((a*sec(d*x + c) + a)^4*cos(d*x + c)^(5/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^4} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\cos \left (c+d\,x\right )}^{5/2}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^4} \,d x \]

[In]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^(5/2)*(a + a/cos(c + d*x))^4),x)

[Out]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^(5/2)*(a + a/cos(c + d*x))^4), x)